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ABSTRACT 

 

The possibility of the phenomenon of Bose condensation having a part to play in the discussion of neutron stars has been 

around for some time. In this short report, the sorts of temperatures and densities that might be involved are discussed. 

Also, an alternative way of viewing the Bose condensation phenomenon is examined once more and, although found to 

lead to more accurate results in traditional examples, is found to have little numerical effect in astrophysical examples. 
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INTRODUCTION  

 

For some time now, the suggestion has been abroad that 

kaon condensation could have a role to play in the 

understanding of neutron stars (Kaplan and Nelson, 

1986). In fact, the appearance of a Bose-Einstein 

condensate of charged pions in dense nuclear matter has 

been under discussion since the early seventies, as was 

noted in the above reference and possibly interest in the 

topic stems from a discussion of the cosmological 

implications of a massive primordial photon gas by 

Kuzmin and Shaposhnikov (1979). However, as far as a 

possible Bose condensation occurring in a star or, indeed, 

the notion of a star being composed primarily of a Bose 

condensate, are concerned, questions of admissible 

condensation temperatures and corresponding number 

densities do not appear to have been addressed. This is 

easily rectified in the simple case of an ideal Bose gas by 

referring to an article on ideal relativistic Bose 

condensation dating back to the 1960s (Landsberg and 

Dunning-Davies, 1965) and leads to some interesting 

results. However, it is noted also that there are problems 

with the traditional approach to the whole question of 

Bose-Einstein condensation. A totally different approach 

was investigated some years ago Lavenda (1991) but is 

revisited here to illustrate, once again, that at least some 

of the well-known difficulties of the usual approach to the 

problem may be avoided. 

 

Theory of Bose condensation 

In the usually accepted way, consider an ideal Bose gas 

with ν(E)dE single-particle quantum states in an energy 

range dE. Here E excludes the rest energy ε0 = mc2. If the 

number of particles in the lowest energy level is N1(α,T) 

at temperature T, then the total number of particles in the 

system is  
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where α = (µ – ε0)/kT, µ being the chemical potential. As 

the temperature is lowered, the numerical value of α, in 

the limit of infinite volume, decreases, and can in some 

cases become zero at a critical temperature Tc > 0. Hence, 

for a large volume, this condensation temperature may be 

defined by 

 

α < 0 for T > Tc, α = 0 for T ≤ Tc (2) 

 

If (2) is used in formula (1), a unique condition for T = Tc 

is not obtained unless (2) is supplemented by  

 

N1(α,T) << N for T ≥ Tc (3) 

 

where the equality sign is important. Below the 

condensation temperature, N1(α,T) is a nonnegligible 

fraction of N. Accordingly, Tc follows from the following 

relation: 
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Here a previous argument has been followed (Landsberg, 

1961) but a more rigorous foundation for these equations 

is possible (Landsberg and Dunning-Davies, 1965).  

 

For a relativistic gas, the density of states is 

 

ν(E) = (4πV/h3c3)(E + ε0)(E2 + 20E)1/2 (5) 

 

Using this expression in formula (4) yields 

 

N = 4πV(kTc/hc)3K(0,1,uc) (6) 

 

where  
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Approximate solutions of expression (6) for each of the 

two limiting cases may be obtained by expanding the 

numerator of the integrand of K(0,1,uc) to give 

 

K(0,1,uc) ≈ (πuc/2)1/2ζ(3/2)uc, if uc >> 1  

(nonrelativistic) 

 

 

and  

 

K(0,1,uc) ≈ 2ζ(3), if uc << 1  

(extreme relativistic) 

 

 

In these two limiting cases, the relevant condensation 

temperature is given by 
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and  
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As is shown in detail in Landsberg and Dunning-Davies 

(1965), if condensation temperature is plotted against 

mass for each of the above limiting cases, the two 

resulting straight lines intersect on another straight line 

whose equation is given by eliminating N/V between the 

values corresponding to formulas (7) and (8). The result 

of this elimination is the following equation:  
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Above this line relativistic effects become important. It 

might be noted also that the higher the concentration, the 

higher the rest mass at which these effects begin to 

appear. For the kaons mentioned above, this equation 

gives a value for the condensation temperature of 7.13 × 

1012 [K]. Using this value in either expression (7) or (8) 

shows that, for these kaons, relativistic effects will come 

into play for values of the concentration above 

approximately 3 × 1039, which implies above a mass 

density of approximately 2.67 × 1015 [gm/cc]. 

 

All of the above, apart from the brief application to kaons, 

is well documented in Landsberg and Dunning-Davies 

(1965), from which further details may be extracted. 

However, to reach the above results, even in a more 

rigorous deduction, the condensation temperature is said 

to have been reached when α = 0. It is claimed frequently, 

and correctly, that α must remain nonzero since, if not, the 

implication is that the number of particles in the lowest 

energy level becomes infinite. Initially, though, the total 

number of particles in the system is always assumed both 

fixed and finite. In most traditional approaches to the 

topic, as here, these latter points are either ignored or 

glossed over.  

 

An alternative approach to Bose-Einstein 

condensation  

The Bose-Einstein distribution, which is really an 

expression for the average number of particles in a given 

energy range as a function of the absolute temperature 

rather than a genuine distribution, may be derived from 

the negative binomial distribution  
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where p and q are the a priori occupation and absence 

probabilities, by writing it as a law of error for which the 

most probable value coincides with the mean of the 

distribution. The entropy is the potential function which 

determines the law of error and the second law of 

thermodynamics then determines the Bose-Einstein 

distribution. Negative binomial distribution (9) is actually 

the probability of finding n identical unnumbered 

particles in Ω boxes, with no empty boxes. The binomial 

coefficient is the number of ways the n particles may be 

distributed among the Ω boxes. If Ω is equal to unity, 

expression (9) becomes  
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which is the geometric distribution. Hence, the case where 

the density of states is unity does not belong to the 

negative binomial distribution but, rather, to the 

geometric distribution. This seemingly innocuous result 

immediately raises questions concerning the extraction of 

the term relating to the number of particles in the lowest 

energy level from the sum and subsequently writing the 

expression for the total number of particles in the system 

as in expression (1). 

 

However, as was shown some time ago Lavenda (1991), 

probability distributions belonging to the same family 

may enter into ‘equilibrium’ with one another in much the 

same way as material phases do, but can this idea be used 

in the present context? It does seem that the Bose-Einstein 

gas might be thought to owe its condensation 

phenomenon to an osmotic equilibrium established 

between the negative binomial and geometric 

distributions. The osmotic equilibrium that is maintained 

by a pressure difference between the two phases may be 

thought due to some semi-permeable ‘membrane’. This 

‘membrane’ would be permeable to the Bose-Einstein gas 

(particles in excited states) but not to the condensate 

(particles in the zero-energy state). The Bose Einstein 

condensation, or osmotic equilibrium, would exist at any 

temperature. However, at high temperatures, few particles 

will be in the zero-energy state and so, the equilibrium 

will be insignificant. The onset of what is normally called 

Bose-Einstein condensation will occur at the point where 

the osmotic pressure exhibits a minimum with respect to 

the mole fraction.  

 

The entropies 
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and  
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are found by casting probability distributions (9) and (10), 

respectively, as laws of error for which the most likely 

value of n equals the mean of the distribution. If their 

derivatives at constant volume with respect to 
Gn  and 

Ln , respectively, are equated to the corresponding 

expressions obtained from the second law of 

thermodynamics, then 
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where the fugacities are defined by  

and , result. For (14) to be positive and 

finite, the chemical potential L   must be finite and less 

than zero. The Bose-Einstein condensation is due, then, to 

the osmotic equilibrium established between the two 

phases. 

The latter two equations give the mean numbers for the 

two phases with chemical potentials µG and µL. For 

chemical equilibrium these must be equal and, by varying 

the common temperature and pressures PG and PL of the 

two phases, the maintenance of equilibrium implies 
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G
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and 
L

mS  are the molar entropies and 
GG
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LL

m nVV /  are the specific molar volumes of these 

two phases. Using the Gibbs’ relation, the pressures of the 

two phases are found to be 
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These pressures may be seen to satisfy generalised 

Clapeyron equation (15), establishing the fact that a phase 

equilibrium has been attained. This equilibrium is 

independent of the actual nature of the system, which is 

specified only when a definite expression is given for Ω, 

the number of states in a given energy interval. Hence, the 

phase equilibrium may apply to relativistic particles of 

zero mass as well as to nonrelativistic ones. The stability 

criteria must be obtained in terms of the total pressures 

but, since they must be independent of the energy of a 

particular mode, the phase equilibrium must be 

established between each excited mode belonging to the 

negative binomial distribution and the ground state 

belonging to the geometric distribution. This must also be 

so since the excited modes do not interact with one 

another.  

 

At the point where the above pressures are equal, µG > µL. 

Hence, in order to achieve equilibrium, PL > PG. The 
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excess pressure, PL – PG, is the osmotic pressure. The 

total osmotic pressure is 
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and the second term in formula (18) is obtained by 

integrating expression (16) over all energy states. The 

establishment of an osmotic equilibrium with a positive 

osmotic pressure requires PL = –Tln(1 – z)/V, the pressure 

of the condensate, to be greater than VzTgPG

tot /)(2/5  

the total gas pressure. This will occur for values of z very 

close to unity.  

 

The chemical potential is always related to both the 

temperature and volume via the following relation:  
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since the total number of particles is conserved. Hence, it 

cannot be concluded, in a truly realistic model, that the 

total gas pressure is independent of the volume below the 

critical temperature. This conclusion follows only if µ = 0 

and, as is seen from expression (19), this would imply 
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and would make a nonsense of the idea of particle number 

conservation.  

 

The critical point is determined by requiring the total 

osmotic pressure to be a minimum with respect to the 

mole fraction. By writing 
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expression (18) may be written as follows:  
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The critical temperature is determined by 

 

0)/(  T

L

tot n   

 

This leads to the following condition:  
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It follows that, at the critical point there is  
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which is almost unity for N >> 1 and Πtot is a minimum.  

 

Hence, at the critical point there is  

 

 

This leads to a value for the critical temperature of a 

nonrelativistic Bose-Einstein gas of 1.98 [K]. However, 

the true critical temperature will be slightly higher than 

this since g3/2(z) is a bounded, positive, monotonically 

increasing function of z between zero and one.  

 

This approach is obviously quite appealing, producing, as 

it does, a figure for the condensation temperature so close 

to the experimentally measured value of 2.18 [K] as 

opposed to that derived by traditional means. Also, and 

very importantly, the traditional approach ends up with an 

infinite number of particles in the ground state and this is 

hardly compatible with the assumption of a fixed number 

of particles. As far as applications to possible Bose 

condensates in stars are concerned, the new approach has 

little effect on the final value for the condensation 

temperature. In fact, the difference between the two 

approaches is seen to amount to introducing a factor 

(1/2)2/3 into the final expression for the critical 

temperature and this would mean that the condensation 

temperature for the kaons mentioned above would be 4.49 

× 1012 [K], rather than 7.13 × 1012 [K] as given earlier. It 

might be noted also that, for these kaons, relativistic 

effects will come into play for values of the concentration 

above approximately 3  1039. Hence, for a number 

density of 1030, for instance, no relativistic considerations 

would come into play. At first sight at least, these figures 

obtained for a nonrelativistic scenario do not seem totally 

unreasonable. However, these considerations do involve 

the very simple case of an ideal gas. Nevertheless, 
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recourse to more complicated models is not always 

necessary to gain understanding of what is happening; so 

often order-of-magnitude calculations can lead to a real 

understanding of processes under consideration with little 

need for truly detailed calculations. Such might well be 

the case here.  

 

QUESTIONS REMAINING FOR CONCLUSION 

 

Even with this alternative approach to Bose-Einstein 

condensation, problems remain. As stated earlier, the total 

osmotic pressure Πtot, as given by expression (18), will be 

positive for values of z very close to unity. However, the 

idea presented here is that the critical temperature occurs 

when )2/(  NNzz c  and, at this value of z, if 

N = 1024, –ln(1 – z) ≈ 55.26, which is not large and is 

appreciably smaller than Vg5/2(z)/λ3. 

 

Two possibilities immediately occur as resolutions to this 

difficulty:  

 

(a) since the stability criteria must be independent of the 

energy of a particular mode, as mentioned earlier, the 

phase equilibrium must be established between each 

excited mode belonging to the negative binomial 

distribution and the ground state belonging to the 

geometric distribution. It is possible for PL > PG for all 

excited states without PL being greater than 
G

totP ; that is, 

without Πtot being positive;  

 

(b) if the number of states at ε = 0 is not one but ω, where 

ω may be large,  
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If ω is large enough, –ln(1 – zc) can become greater than 

Vg5/2(zc)/λc
3.  

 

However, if this is the correct route towards the resolution 

of the problem, expression (10) would be replaced by an 

expression derived by putting Ω = ω in expression (9) not 

equal to one, and this would give 
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that is, a second negative binomial distribution. The 

problem would then be to examine an osmotic 

equilibrium established between two negative binomial 

distributions.  

 

These latter points obviously require more time and 

thought devoted to them. However, more details may be 

found in the book by Lavenda (1991), where further 

references are given also. 
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